

Unterstützung der Klimatisierung von energetisch hocheffizienten Gebäuden durch vertikale Innenraumbegrünung

Vertical indoor greeenings as support for climate control in low-energy buildings

Dr. Annette Bucher

With financial support by Forschungsinitiative Zukunft Bau (Bundesinstitut für Bau-, Stadt-, und Raumforschung, Germany, 4/2013 – 7/2015)

Relative humidity in interior rooms

Comfort range for room air temperature and relative humidity in interior rooms

(according to Leusden and Freymark in FLL-Innenraumbegrünungsrichtlinien, 2011)

Increasing relative humidity by potplants

Measurement chamber for transpiration and photosythesis

Results:

Transpiration of *Sparrmannia africana* or *Ficus benjamina* increased interior relative humidity about 4 to 5 % under best growing conditions

Approach: use of functional, vertical greenings to increase relative humidity

Characteristics:

- » Air moistening is passive and thus hygienically uncritical
- » Mineral substrate is chemically and physically stable
- » Mode of action corresponds to a vegetated surface evaporator

Mode of action of a functional, vertical greening

Experimental setup

Part 1

- 1. Selection of potentially suitable vertical greening systems
- 2. Recording of evaporation under controlled conditions
 - without plants
 - with plants (*Philodendron hederaceum*)
 - variation of the room climate (temperature, air movement)
 - approach to optimal irrigation-cycles
- 3. Identification of a suitable low-energy building

Part 2

4. Test under realistic conditions in offices

Comparison of vertical indoor greening systems

HOCHSCHULE WEIHENSTEPHAN-TRIESDORF UNIVERSITY OF APPLIED SCIENCES	\bigvee
---	-----------

Experimental setup: Vertical greening systems with plants were placed on scales in the greenhouse

Results - Greenhouse

Water release of vertical greenings with plants and optimized irrigation (spread over 24 hours)

Contribution to humidity (water vapour) in homes

Source	Release of water vapour	
Sleeping person	40 - 50 g h ⁻¹	
Person at domestic work	90 g h ⁻¹	
Person at physical loaded work	175 g h ⁻¹	
Potplants	7 - 15 g h ⁻¹	
Ficus (medium high)	10 - 20 g h ⁻¹	
Laundry (washing machine)	200 - 350 g wash ⁻¹	
Drying clothes	50 - 200 g h ⁻¹	
(4,5 kg, spin-dried)		
Frying	600 g h ⁻¹	
Cooking	450 - 900 g h ⁻¹	
Dishwasher	200 g wash ⁻¹	
Bath	1100 g bath ⁻¹	
Shower	1700 g shower ⁻¹	

Vertical greenings: 25 - 50 g m⁻² h⁻¹

Effect of relative humidity on water release from vertical greenings with plants equipped with optimized irrigation (spread over 24 hours)

Values added up from 8:00 to 19:50 Uhr

System 6: Correlation between water release with plants and relative humidity or temperature

Results - Greenhouse

System 1

System 4

System 2

System 5

System 3

System 6

Systems after 4 months with plants

Highly targeted system:

- Water release
- Practicability
- Available on the market

Conclusions - Part 1

Comparison of systems in the greenhouse

- » Significant differences between the systems (water release, user friendliness, reliability)
- » 50 g m⁻² h⁻¹ water release with the systems 5 and 6
- » Increase in relative humidity caused by the systems is higher than by potplants
- » Self-regulatory effect related to relative air humidity was visible

System 6

System 5

Experimental setup

Part 1

- 1. Selection of potentially suitable vertical greening systems
- 2. Recording of the evaporation under controlled conditions
 - without plants
 - with plants (*Philodendron hederaceum*)
 - variation of the room climate (temperature, air movement)
 - approach to optimal irrigation-cycles
- 3. Identification of a suitable low-energy building

Part 2

4. Test under realistic conditions in offices

Material & Methods: Office

Large office

- » large office 33 m²
- » equipped with 1,4 m² of system 6

Material & Methods: Office

Small office

- » small office 17 m²
- » equipped with 0,7 m² of system 6

Water release per module and day in the offices

Development of water release [g module⁻¹ d⁻¹], temperature [°C] and relative humidity [%] in the large office with greening

Development of relative humidity in small offices (17 m²) with and without system 6 and different user behaviour

Maximum difference in standardized relative humidity between the office with and without greening

Office size	User behaviour	Max. difference in standardized relative humidity [%-points] between the office with and without system 6
large (33 m²)	Door mostly open	8,3
small (17 m²)	Door mostly closed	19,5
small (17 m²)	Door mostly open	13,8

Conclusions – Part 2

Using system 6 under real conditions in offices

- Water release of system 6 in offices was on average in the same range as in greenhouses (50 g m⁻² h⁻¹)
- » Increase of relative humidity was about 20 %-points on maximum, when the initial relative humidity was low and the door closed
- » Self-regulatory effect: low water release with hight initial humidity in the room
- » User conduct in the office had distinct influence on effectiveness

Strictly necessary:

- » Close meshed controll of greening system function
- » Artificial light necessary in most cases
- » Use system that fits horticultural requirements
- » Calculation of greening size depending on room size and room characterisics
- » Consider user behaviour

Increasing relative humidity with vertical indoor greenings in offices is possible

